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Abstract

Decomposition of the time-reversal operator for an array, or equivalently the singular value de-

composition of the multistatic response matrix, has been used to improve imaging and localization

of targets in complicated media. Typically, each singular value is associated with one scatterer

even though it has been shown in several cases that a single scatterer can generate several singular

values. In earlier papers Chambers and Berryman [1, 2] showed that a small spherical scatterer

can generate up to six singular values depending on the array geometry and sphere composition.

It was shown that the existence and characteristics of multiple singular values for each scatterer

can, in principle, be used to determine certain properties of the scatterers, e.g. conducting or

non-conducting material. In this paper, we extend this analysis to non-spherical targets and show

how orientation information about the target may be obtained from the spectrum of singular val-

ues. The general properties of the decomposition for small non-spherical dielectric (and possibly

conductive) targets in an electromagnetic field are derived and detailed results are obtained for

the specific cases of non-magnetic and perfectly conducting needles and disks. It is shown that

scatterer orientation can be estimated by tracking the singular values of a linear array as it is

rotated around its midpoint.
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I. INTRODUCTION

There has been an increasing interest in applying time-reversal focusing techniques to

electromagnetic waves for enhancing communication and imaging through highly scattering

media. This interest follows the rapid development of time-reversal techniques in acoustics

(see articles [3, 4] for recent reviews). Though application of time-reversal techniques to elec-

tromagnetic waves is straightforward in principle, implementation can be significantly more

difficult due to the higher frequencies (∼GHz) used in applications such as communications

and radar. Consequently, most proposed implementations of time-reversal for electromag-

netic radiation have been as imaging algorithms and other signal processing applications.

However, recent demonstrations of time-reversal focusing (Lerosey, et al. [5] and Henty, et

al. [6]) and imaging of real data (Shi, et al. [7] and Liu, et al. [8]) have brought time-reversal

methods significantly closer to real-world applications.

Time-reversal methods are motivated by the concept of a time-reversal mirror (TRM [3]).

This application consists of an array of transceivers that can record and later retransmit

any signal it receives. Each element records the wave field incident on the element, reverses

the time signal, then retransmits the reversed waveform. The TRM can be considered a

broadband implementation of a phase conjugate mirror (PCM). Like a PCM, if the wavefield

from a single source is incident on the TRM, the retransmitted wave focuses back onto the

source. The added advantage of a TRM is that all frequencies are focused to the same point

at the same time, achieving both spatial and temporal focusing. This occurs even in complex

media with multiple scattering and dispersion (see [9–11]). Mathematically, the process

is described by the time-reversal operator (TRO), which is derived from the multistatic

response matrix (MRM) of the array. This matrix can be obtained by transmitting an

impulse from a selected element and recording the received waveforms on all the elements.

By repeating the transmit operation for all elements, we obtain a matrix of impulse responses

for all combinations of transmitter and receiver. The TRO is the temporal autocorrelation

of the MRM (or the product of the MRM with its conjugate in the frequency domain). The

behavior of the TRM can be analyzed directly from the MRM by applying the singular value

decomposition (SVD) in the frequency domain [12–14]. This is the basis for time-reversal

imaging methods in complicated media.

To put the present work in proper context, we will now emphasize some significant dif-
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ferences with prior work. In nearly all of the methods of time-reversal imaging of point-like

targets, there is the underlying assumption that each singular value of the multistatic re-

sponse matrix corresponds to a distinguishable point-like target, i.e. there is a one-to-one

correspondence between singular values and observable targets making the rank of the MRM

equal to the number of targets (see references [14, 15]). Though not essential for deriving

time-reversal imaging algorithms, there has been little work until recently (see Ammari et al.

[16, 17]) that assumes multiple singular values per target. The one-to-one correspondence

assumption simplifies the mathematical development of the imaging algorithms and is often

valid in experiments when one singular value of each target is dominant [7, 8, 14]. The

physical interpretation of this “mathematical” point target assumption is that the target

simply reradiates a scaled version of the incident field at the target location. The scale factor

is the target strength, or cross-section (see [18–20]). In contrast, a more careful description

of scattering from small targets, whose size a is much less than a wavelength λ, would calcu-

late the scattered field to lowest order in powers of a/λ from the governing wave equations

(acoustic, elastic, electromagnetic, ...).

For acoustical scattering from spheres, the lowest order scattering is order (a/λ)3 and

consists of a monopole (spherically symmetric) whose strength depends on the compressibil-

ity contrast of the sphere, and a dipole whose strength depends on the density contrast[21].

Since the dipole is a vector, there are three degrees of freedom associated with it. These

modes, combined with the monopole, give four possible singular values for the MRM. For

the electromagnetic case, there are six possible singular values for a small sphere, since the

incident field can induce both electric and magnetic dipole moments [1, 2]. For these “phys-

ical” point targets, the target strength can be regarded as a vector operator acting on the

incident field at the target location. Thus the spectrum of singular values associated with

a small target is produced from the lowest order term for the scattered field, and scales

uniformly with target size. The number of singular values remains the same, no matter how

small the target is. Thus by using the actual scattering physics, we can analyze the behavior

of the MRM for “physical” point targets instead of the “mathematical” point targets. For

certain special cases, such as acoustic scattering from neutrally buoyant particles or electro-

magnetic scattering in two dimensions, the scattering produces only one singular value per

target. However, these cases are relatively rare and a true physical description would more

generally require multiple singular values per target.
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The presence of multiple singular values for point-like targets has been detected exper-

imentally by Minonzio et al. [22], and used by Prada and Thomas [23] to resolve closely

spaced targets. Chambers and Gautesen [21] showed how the actual number of singular

values associated with a small sphere in acoustics depends on the array geometry and the

material composition. By measuring the spectrum of singular values, it is possible, in prin-

ciple, to classify the target by its material properties (acoustically soft or hard). Similarly,

for electromagnetic scattering from a small sphere, it would be possible to assess the con-

ductivity of the sphere material.

In this paper, we extend the analysis of the time-reversal operator for electromagnetic

waves to small non-spherical targets, following the approach taken in reference [1]. For

these targets, both material properties and orientation affect the spetrum of singular values.

We will show that orientation information could, in principle, be extracted by rotating an

array and examining the singular values as functions of the rotation angle. Equivalently,

one could define a sequence of subarrays and calculate the sequence of singular values. The

use of subarrays during array processing is the basis behind a number of algorithms such as

ESPRIT [24]. However, subarrays have yet to be used in time-reversal analysis of targets.

We show in this paper that subarray approaches have the potential to extract additional

information besides target location.

II. DERIVATION OF THE MULTISTATIC RESPONSE MATRIX

Consider an array of N short, crossed dipole elements lying in the plane z = −za (see

figure 1), where za is the distance between the plane and the target. The position of the

nth element is given by the vector rn = (ξn, ηn,−za). Following Krauss [25], the electric and

magnetic fields at the field point r radiated from the nth element are given by

H(i)
n (Rn) =

ikeikRn

4πRn

[
R̂n × (dxI

x
n êx + dyI

y
nêy)

]
(1)

E(i)
n (Rn) = − 1

ε0c
R̂n × H(i)

n (Rn) , (2)

where c is the speed of light, k is the wave number, ε0 is the electrical permittivity, and

Rn = r − rn. The scalar Rn is the magnitude of the vector Rn and R̂n is the unit vector

in the direction of Rn. The crossed dipoles in the array element (lengths dx and dy) are

driven by the currents Ix
n and Iy

n. The unit vectors in the x and y directions are êx and êy
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FIG. 1: Geometry of the array and target. Crossed dipole elements m and n are shown at distances

rm and rn, respectively, from the target. Distance from target to plane of the array is za.

respectively.

Let a target object of characteristic size a � za be placed in front of the array, centered

at the origin. The field incident on the target from the nth element can be approximated

as a plane wave coming from the direction of the element. If the target is much smaller

than a wavelength, the field scattered from an incident plane wave is given to leading order

(O((ka)3)) [26] by

E(s)(r) = −k2eikr

r
[̂r × (m + r̂ × p)] , (3)

where p and m are the induced electric and magnetic dipole moments. These are linearly

related to the incident field at the target position (r = 0, Rn = −rn) through the electric

(De) and magnetic (Dh) dipole tensors:

m =
1

ε0c
Dh · H(i)

n (−rn) , p = De ·E(i)
n (−rn) , (4)

The tensors themselves depend on the shape, size, and electromagnetic material properties

(permittivity, permeability, conductivity) of the target. They can be decomposed into their
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principal components,

De = a3 UePUeT , Dh = a3 UhMUhT , (5)

where P is a diagonal matrix with elements {p1, p2, p3}, M is a diagonal matrix with ele-

ments {µ1, µ2, µ3}, and Ue and Uh are orthogonal matrices whose columns are the principle

directions for their respective tensors. The notation (·)T denotes the transpose of the matrix.

The scattered field induces voltages on each dipole of the array elements. From reference

[27], the voltages induced on the dipoles of the mth element can be expressed as

V x
m = dx [̂rm × (r̂m × êx)] · E(s)(rm) = −dxêx · E(s)(rm) , (6)

V y
m = dy [̂rm × (r̂m × êy)] · E(s)(rm) = −dyêy · E(s)(rm) ,

since r̂m · E(s)(rm) = 0.

Combining these with the previous expressions for the incident field (1) and scattered

field (3), we can calculate the coupling between the voltages {V x
m, V y

m} in the mth receiv-

ing element and the currents {Ix
n, Iy

n} in the nth transmitting element generated through

scattering from the target (details can be found in ref. [1]):


V x

m

V y
m


 =


Kxx

mn Kxy
mn

Kyx
mn Kyy

mn





Ix

n

Iy
n


 = Kmn


Ix

n

Iy
n


 . (7)

The 2 × 2 matrix Kmn can be written as

Kmn =
i(ka)3d2

0

4πε0c
eik(rm+rn)K̂mn , (8)

where K̂mn is given by

K̂mn =
1

rmrn

3∑

j=1

[
µjk̂

h
mjk̂

hT
nj − pjk̂

e
mj k̂

eT
nj

]
, (9)

k̂h
mj =




dx

d0
(r̂m × êx) · uh

j

dy

d0
(r̂m × êy) · uh

j


 , k̂e

mj =




dx

d0
[r̂m × (r̂m × êx)] · ue

j

dy

d0
[r̂m × (r̂m × êy)] · ue

j


 , (10)

d0 =
√

d2
x + d2

y, and ue
j and uh

j are the jth columns of Ue and Uh. Note that K̂nm = K̂T
mn

by reciprocity. The diagonal elements represent coupling between identical polarizations (x

or y), while the off-diagonal elements represent cross-polarization coupling (x with y).

6



From this result, the relationship between the transmit currents and the received voltages

over the entire array can be constructed. Let V be the vector of received voltages and I

the vector of transmit currents (both with length 2N , accounting for x and y components).

Then we can write

V = T I , (11)

where

V =




V H
1

V V
1

...

V H
m

V V
m

...

V H
N

V V
N




, I =




IH
1

IV
1

...

IH
n

IV
n

...

IH
N

IV
N




, (12)

and the 2N × 2N matrix T is assembled from all the matrices Kmn:

T =




K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

. . .
...

KN1 KN2 · · · KNN




. (13)

(The current vector I should not be confused with the identity matrix I.) The matrix T is

the multistatic response matrix (MRM). It is symmetric and has units of impedance. It can

be considered the part of the radiation impedance of the array attributable to the presence

of the target. Its 2N × 2N size results from the two components of polarization for each

element in the array. If only one polarization is used (dx = 0 or dy = 0), three-quarters

of the matrix elements are zero and the useful part of T reduces to an N × N matrix. A

generalization of this matrix for multiple small targets, and separate transmit and receive

arrays can be found in references [16] and [17].

III. DECOMPOSITION OF THE TIME-REVERSAL OPERATOR

The time-reversal operator (TRO) is given by T∗T. Its eigenvalues and eigenvectors

characterize the properties of the array as a time-reversal system. Each eigenvector specifies
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a set of currents that, when applied to the dipoles in each element of the array, will produce a

field that focuses on the target. In addition, the received voltages from the resulting scattered

field will be proportional to the conjugate of the applied currents. The proportionality

constant is the apparent strength of the scattering mode in the target that is excited by

the incident field. Its square is an eigenvalue of the TRO. Rather than decompose T∗T,

it is more convenient to calculate the singular value decomposition (SVD) of T. The right

singular vectors are identical to the eigenvectors of the TRO, and the squares of the singular

values are equal to the eigenvalues. Since T is symmetric the SVD is [28]

TΦ = ΛΦ∗ , (14)

where the singular values Λ are real and non-negative. The SVD can be further simplified

by factoring out common quantities. Let

Φ =
1√
i




φ1e
−ikr1

φ2e
−ikr1

φ3e
−ikr2

φ4e
−ikr2

...

φ2N−1e
−ikrN

φ2Ne−ikrN




, Λ =
(ka)3d2

0

4πε0c
λ , (15)

then the SVD becomes

T̂φ = λφ∗ , (16)

where

T̂ =




K̂11 K̂12 · · · K̂1N

K̂21 K̂22 · · · K̂2N

...
...

. . .
...

K̂N1 K̂N2 · · · K̂NN




. (17)

The quantities factored out of Φ are phase factors that cause the field created by the singular

vectors to focus on the target position. Since there is only one target, this distribution of

phases is common to all singular vectors (see [21]). The remaining quantities in φ represent

a complex amplitude distribution that depends more on the scattering pattern of the target

than its location. It is reasonable to expect that the amplitude distributions for each singular

vector contain useful information about target shape and orientation.
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From the expansion of K̂mn in equation (9), we see that T̂ can be expressed as a sum of

six terms, each of which is an outer product of vectors:

T̂ =

3∑

j=1

[
−pj gj gT

j + µj gj+3 gT
j+3

]
, (18)

where

gj =




1
r1

k̂e
1j

...

1
rN

k̂e
Nj


, gj+3 =




1
r1

k̂h
1j

...

1
rN

k̂h
Nj


, j = 1, 2, 3 . (19)

The singular vectors for matrices of this form can be expressed as linear combinations of the

vectors g1 through g6,

φ =
6∑

j=1

γjgj , (20)

which reduces the SVD for the 2N × 2N matrix T̂ to an SVD of a 6 × 6 matrix:

CG γ = λ γ∗ , (21)

where Gjl = gT
j gl and C = diag(−p1,−p2,−p3, µ1, µ2, µ3). Thus the rank of the multistatic

response matrix is determined by the physics of the scattering contained in equation (3).

This behavior is described by the induced electric and dipole moment vectors, which in

three dimensions represent six degrees of freedom. The rank may be less than six in certain

special cases, e.g. non-magnetic targets (µj = 0). For higher frequencies (or larger targets),

additional multipole moments will contribute to the scattered field, increasing the rank of

the multistatic response matrix. A similar analysis for the acoustic (scalar) case can be

found in references [21, 22, 28].

To summarize, we have shown that the SVD of the original 2N ×2N multistatic response

matrix reduces to the SVD of a 6×6 matrix, CG. The physics of the scattering process, not

the details of the array, governs the rank of the response matrix. Since we are interested in

how information about the target is encoded in the SVD, it would be helpful to determine

a way of separating target information from the effects of the array configuration in the

decomposition. This has already been partially accomplished in the form of the matrix in

equation (21), which is a product of the diagonal matrix C (which specifies the strength

of the induced dipole moments) and the matrix G. The latter contains the effects of both

array configuration and target orientation (through Ue and Uh). It would be useful to find
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a way to separate these two contributions to G. Careful examination of the structure of G

reveals that each 3× 3 quadrant of the matrix can be decomposed into products of Ue and

Uh with matrices that depend only on the array configuration:

G =


 UeTBUUe UeTBXUh

(
UeTBXUh

)T
UhTBLUh


 , (22)

where BU, BX, and BL are 3× 3 array configuration matrices. These matrices depend only

on the array configuration and target location, and are given by

BU =
1

d2
0

N∑

n=1

1

r6
n

{
d2

x [rn × (rn × êx)]
2 + d2

y [rn × (rn × êy)]
2}

BX =
1

d2
0

N∑

n=1

1

r5
n

{
d2

x [rn × (rn × êx)] ⊗ [rn × êx] + d2
y [rn × (rn × êy)] ⊗ [rn × êy]

}
(23)

BL =
1

d2
0

N∑

n=1

1

r4
n

{
d2

x [rn × êx]
2 + d2

y [rn × êy]
2} ,

where ⊗ is the vector outer product and a2 = a ⊗ a = aaT when a is a vector. For a

continuous aperture, we can replace the sum over array elements with an integral over the

aperture normalized by the aperture area. With this decomposition, we have successfully

separated target characteristics (size, orientation, composition) from array characteristics.

In the remainder of the paper, we investigate particular cases and show how, in principle, one

can obtain target information from the singular values and singular vectors of the multistatic

response matrix.

IV. PERFECTLY CONDUCTING NEEDLE

Consider a spheroid positioned at the origin with its axis of symmetry oriented along the

unit vector b3. The length along its axis is 2a3, and the radius in the perpendicular direction

is a1. In the limit of a1/a3 → 0, the spheroid becomes a needle. If the needle is perfectly

conducting, the leading order contribution to the scattering is given by the electric dipole

moment tensor [26]:

De =
a3

3

3 ln (a3/a1)
bT

3 b3 . (24)
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Comparing this with the general tensor decompositions in equation (5), we have µ1 = µ2 =

µ3 = 0, p1 = p2 = 0, p3 = 1/3, and define

a3 =
a3

3

ln (a3/a1)
. (25)

The matrix Ue becomes the single vector b3, so that G = GU = b3 HU bT
3 (scalar). Thus

the response matrix is rank one and the singular value is

λ =
1

3
b3 HUbT

3 . (26)

Let θ be the angle between the needle axis and the z axis (0 ≤ θ ≤ π/2), and φ be the

angle between the x axis and the projection of the needle in the ξη plane (−π ≤ φ < π).

Then b3 = (cos φ sin θ, sin φ sin θ, cos θ), and the singular value for a continuous circular

aperture is

λ =
1

6

[
β1 + β2 +

d2
x − d2

y

d2
0

(β1 − β2) cos(2φ)

]
sin2 θ + β3 cos2 θ (27)

∼ 1

6z2
a

{[
1 +

d2
x − d2

y

d2
0

cos(2φ)

]
sin2 θ + O(R2/z2

a)

}
, R/za � 1 .

For the continuous linear array oriented parallel to the x axis, we have

λ =
1

6

[
α1d

2
x + α2d

2
y

d2
0

+
α1d

2
x − α2d

2
y

d2
0

cos(2φ)

]
sin2 θ +

d2
x

d2
0

α3 cos2 θ (28)

∼ 1

6z2
a

{[
1 +

d2
x − d2

y

d2
0

cos(2φ)

]
sin2 θ + O(R2/z2

a)

}
, L/za � 1 .

Expressions for the α and β parameters are found in the Appendix. The asymptotic ex-

pressions in equations (27) and (28) are valid in the far field of the array. As expected,

the singular values do not depend on φ when the needle is aligned with the z axis (θ = 0).

This result is also found when the x and y dipoles in each element of the circular array are

identical (dx = dy). Similarly, the linear array loses sensitivity to φ in the far field when

dx = dy. Conversely, the arrays are maximally sensitive to φ when there is only one dipole

in each array element, i.e. dx = 0 or dy = 0 (or when only half the degrees of freedom are

in use).

Our primary interest in the singular value is how target information, orientation in this

case, is encoded in the singular value. More specifically, can we estimate the orientation of

the needle directly from the singular value? Recall that experimental determination of the
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singular value is obtained by applying the SVD directly to the measured 2N × 2N response

matrix. If the rank of this matrix is one, we might infer that the target is a perfectly

conducting needle. Various imaging techniques could be used to locate the target when the

medium is free space. Once the target location is estimated, the array could be turned so

that the z -axis (axis of symmetry) of the array goes through the target. The final step would

be determining the orientation.

One method of extracting orientation information would be to compute the singular value

using only the x elements (dy = 0), and compare it to the singular value using only the y

elements (dx = 0). The difference of singular values for the circular array is proportional to

cos(2φ) sin2 θ. The same is true for the linear array when the needle is in the far field. If the

difference is zero, then θ = 0 or φ = nπ/4, n ∈ {±1,±3}. This provides some information

on target orientation. However, more information may be obtained by relocating the array.

Consider rotating the linear array by an angle φ ′ in the ξη plane. Not only does this

change the orientation of the array, it also changes the orientation of the dipoles in each

array element. This rotation is equivalent to rotating the needle by the angle −φ ′, so that

φ becomes φ − φ ′ in the expression for the singular value:

λ =
1

6

[
α1d

2
x + α2d

2
y

d2
0

+
α1d

2
x − α2d

2
y

d2
0

cos (2(φ − φ ′))

]
sin2 θ +

d2
x

d2
0

α3 cos2 θ (29)

It is apparent that λ will attain an extremum when |cos (2(φ − φ ′))| = 1. This occurs when

φ − φ ′ = nπ/2, i.e. the array is either parallel or perpendicular to the projection of the

needle axis in the ξη plane depending on the sign of α1d
2
x−α2d

2
y . By using only the x dipoles

in each element (dy = 0), the extrema of the singular value occur when the array is parallel

to the projection of the needle. This approach allows us to estimate the φ orientation up

to an ambiguity of ±π. In addition, we could apply the same analysis using the circular

array by performing the SVD on the response matrices of a carefully selected sequence of

subarrays. Each subarray would consist of the elements of a circular array along a line

through the array center. The lines are parameterized by their angles φ ′ from the ξ axis.

By applying the SVD to the sequence of subarrays in order of increasing angle φ′, we can

replicate the effect of rotating the linear array.1

1 To strictly reproduce the effect of rotating a linear array, we must also take into account the rotation of
the dx and dy dipoles in each array element. This is easily accomplished by applying the rotation matrix
generated by φ ′ to the dipole elements.
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V. PERFECTLY CONDUCTING DISK

Another interesting case is a perfectly conducting disk positioned at the origin. Again,

the axis of symmetry of the disk is specified by the vector b3. We will also require vectors

b1 and b2 to specify the plane of the disk (perpendicular to b3). For convenience, we

choose b1 = (cos φ cos θ, sin φ cos θ,− sin θ) and b2 = (− sin φ, cosφ, 0). The leading order

contributions to the scattered field as a3/a1 → 0 are produced by two induced electric dipole

moments in the plane of the disk (along b1 and b2), and an induced magnetic dipole moment

along b3. Thus the electric and magnetic moment tensors are

De =
4a3

1

3π

(
bT

1 b1 + bT
2 b2

)
, Dh =

2a3
1

3π
bT

3 b3 , (30)

where a1 (= a) is the radius of the disk. Since there are only three contributions to leading

order, the G matrix reduces to

G =




GU
11 GU

12 GX
13

GU
12 GU

22 GX
23

GX
13 GX

23 GL
33


 , (31)

where GU
ij = biB

UbT
j , GX

i3 = biB
XbT

3 , and GL
33 = b3B

LbT
3 , for i, j ∈ {1, 2}. Though it is

possible to perform the SVD analytically, this serves little purpose as it is more convenient

to calculate a specific numerical example.

Figure 2 shows the three singular values that are obtained from the SVD of CG for a

linear array rotating around its center in the ξη plane, L/za = 1. If the axis of the disk is

oriented along the z axis (θ = 0), there is no dependence on φ, as expected. For θ > 0 the

first and third singular values are maximum when the array is parallel to the projection of

the disk axis in the ξη plane. In contrast, the second singular value is minimum when the

array is aligned. Thus we can estimate the φ orientation up to a ±π ambiguity using any of

the singular values.
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FIG. 2: Three singular values for a rotating linear array (dx = dy)and a perfectly conducting disk

as functions of polar angle θ and relative rotation angle φ − φ ′ at a range L/za = 1.
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VI. DIELECTRIC NEEDLE OR DISK

Finally, we consider the case of a dielectric (non-conducting) needle or disk placed at the

origin. There are no induced magnetic moments so G = UeTBUUe, with

Ue =
[
bT

1 bT
2 bT

3

]
. (32)

The values of the principal components p1, p2, and p3 for both needle and disk are shown

in Table I. The only difference between the disk and the needle is in the form of p3. The

overall size scale a is given by a = (a2
1a3)

1/3. Figures 3 and 4 show the three singular values

for both the needle and disk for a linear array rotating around its center in the ξη plane,

L/za = 1. The value of the relative permittivity εr is 2. There are only minor differences

between the needle and disk. When θ > 0, the first singular value has a maximum and the

second singular value a minimum when the array is parallel to the projection of the needle

or disk axis in the ξη plane. Interestingly, the third singular value shows minimal variation

with φ, making it difficult to obtain any orientation information from it. Fortunately, the

first two singular values show signficant variation with φ, making it possible to estimate φ

by rotating the array.

Table I. Electric dipole strength parameters for a dielectric needle and disk

Needle Disk

p1
εr − 1

3
εr − 1

3

p2
εr − 1

3
εr − 1

3

p3
2
3

εr − 1
εr + 1

εr − 1
εr
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FIG. 3: Three singular values for a rotating linear array (dx = dy) and a dielectric needle as

functions of polar angle θ and relative rotation angle φ − φ ′ at a range L/za = 1.
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FIG. 4: Three singular values for a rotating linear array (dx = dy) and a dielectric disk as functions

of polar angle θ and relative rotation angle φ − φ ′ at a range L/za = 1.
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VII. SUMMARY AND CONCLUSION

We have generalized the decomposition of the TRO for planar arrays found in references

[1, 2] to the case of small non-spherical targets. We have shown that the rank of the

multistatic response matrix is determined by the number of principal components in the

electric and magnetic moment tensors. The array configuration defines a mapping between

the moment tensor spaces and the space of the TRO. The presence of multiple singular

values for a given target is a property of the nature of the scattering operator at lowest

order in a/λ and persists in the limit of a/λ → 0. Thus this property is a characteristic of

actual “physical” point targets, as opposed to the “mathematical” point targets commonly

assumed in the development of time-reversal imaging algorithms.

We show that orientation information can, both in principle and in practice, be extracted

from observing the behavior of the singular values of the MRM as one rotates a linear

array. This rotation need not be physical, but could be accomplished by applying the

SVD to a sequence of properly defined subarrays in a larger circular or other planar array.

Though we have shown this for only a few examples, it suggests that a substantial amount

of target information could be extracted by applying the SVD to carefully defined sequences

of subarrays. This would extend the utility of the time-reversal imaging methods found in

references [8, 15–18] to include target characterization.

Appendix A: Expressions for Array Configuration Matrix Elements.

Here we derive the matrix elements for BU,BX, and BL for the special cases of continuous

circular and linear arrays when the target is at the origin, which is a position along an axis

of symmetry. Since the arrays are considered continuous, we replace the summations in

equation (23) with integrations over the aperture of the array, normalized by the array

aperture (or length):

BU =
1

d2
0A

∫

A

1

r6

{
d2

x [r × (r × êx)]
2 + d2

y [r × (r × êy)]
2} dA

BX =
1

d2
0A

∫

A

1

r5

{
d2

x [r × (r × êx)] ⊗ [r × êx] + d2
y [r × (r × êy)] ⊗ [r × êy]

}
dA (33)

BL =
1

d2
0A

∫

A

1

r4

{
d2

x [r × êx]
2 + d2

y [r × êy]
2} dA ,

18



where r = (ξ, η,−za) and r =
√

ξ2 + η2 + z2
a. For a circular array the integral becomes

1

A

∫

A

(·)dA → 1

πR2

∫ R

0

∫ π

−π

(·) dφρdρ , (34)

where ρ =
√

ξ2 + η2, tanφ = ξ/η, while for a linear array aligned with the x axis it is

1

A

∫

A

(·)dA → 1

L

∫ L/2

−L/2

(·)
∣∣
η=0

dξ . (35)

Using the above formulas, we can calculate the array configuration matrices for a contin-

uous circular array of radius R:

BU =




d2
x

d2
0
β1 +

d2
y

d2
0
β2 0 0

0 d2
x

d2
0
β2 +

d2
y

d2
0
β1 0

0 0 β3


 , (36)

BX =




0 d2
x

d2
0
β4 0

−d2
y

d2
0
β4 0 0

0 0 0


 , (37)

BL =




d2
y

d2
0
β5 0 0

0 d2
x

d2
0
β5 0

0 0 β6


 , (38)

where

β1 =
7R2 + 10z2

a

16(R2 + z2
a)

2
+

3

8R2
ln

(
1 +

R2

z2
a

)
, (39)

β2 = − 3R2 + 2z2
a

16(R2 + z2
a)

2
+

1

8R2
ln

(
1 +

R2

z2
a

)
, (40)

β3 =
R2

4(R2 + z2
a)

2
, (41)

β4 =
1

3R2

[
4 − za(3R

2 + 4z2
a)

(R2 + z2
a)

3/2

]
, (42)

β5 =
1

R2 + z2
a

, (43)

β6 = − 1

2(R2 + z2
a)

+
1

2R2
ln

(
1 +

R2

z2
a

)
. (44)

In the far field (R/za � 1),

β1 ∼
1

z2
a

(
1 − R2

z2
a

)
, β2 ∼

R4

24z6
a

(
1 − 9R2

4z2
a

)
, β3 ∼

R2

4z4
a

(
1 − 2R2

z2
a

)
,

β4 ∼
1

z2
a

(
1 − R2

z2
a

)
, β5 ∼

1

z2
a

(
1 − R2

z2
a

)
, β6 ∼

R2

z4
a

(
1 − 4R2

3z2
a

)
. (45)
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For a continuous linear array of length L oriented parallel to the x axis, the configuration

matrices are:

BU =




d2
x

d2
0
α1 0 0

0
d2

y

d2
0
α2 0

0 0 d2
x

d2
0
α3


 , (46)

BX =




0 d2
x

d2
0
α4 0

d2
y

d2
0
α5 0 0

0 0 0


 , (47)

BL =




d2
y

d2
0
α6 0 0

0 d2
x

d2
0
α6 0

0 0
d2

y

d2
0
α7


 , (48)

where

α1 =
3L2 + 20z2

a

2(L2 + 4z2
a)

2
+

3

4Lza
arctan

(
L

2za

)
, (49)

α2 =
L2

2(L2 + 4z2
a)

2
+

2

Lza
arctan

(
L

2za

)
, (50)

α3 =
L2 − 4z2

a

2(L2 + 4z2
a)

2
+

1

4Lza

arctan

(
L

2za

)
, (51)

α4 =
4L2 + 24z2

a

3za(L2 + 4z2
a)

3/2
, (52)

α5 = − 2L2 + 8z2
a

za(L2 + 4z2
a)

3/2
, (53)

α6 =
2

L2 + 4z2
a

+
1

Lza
arctan

(
L

2za

)
, (54)

α7 = − 2

L2 + 4z2
a

+
1

Lza

arctan

(
L

2za

)
. (55)

In the far field (L/za � 1),

α1 ∼
1

z2
a

(
1 − L2

4z2
a

)
, α2 ∼

1

z2
a

(
1 − 5L2

96z2
a

)
, α3 ∼

L2

12z4
a

(
1 − 9L2

20z2
a

)
,

α4 ∼
1

z2
a

(
1 − 5L2

24z2
a

)
, α5 ∼ − 1

z2
a

(
1 − L2

8z2
a

)
, (56)

α6 ∼
L2

z4
a

(
1 − L2

6z2
a

)
, α7 ∼

L2

12z4
a

(
1 − 3L2

10z2
a

)
.
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